LeetCode - Minimum Height Trees

Question Definition

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3

return [1]

Example 2:

Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5

return [3, 4]

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

Java Solution

public List<Integer> findMinHeightTrees(int n, int[][] edges) {
    if (n == 1) return Collections.singletonList(0);
    List<Integer> leaves = new ArrayList<>();
    List<Set<Integer>> adj = new ArrayList<>(n);
    for (int i = 0; i < n; ++i) adj.add(new HashSet<>());
    for (int[] edge : edges) {
        adj.get(edge[0]).add(edge[1]);
        adj.get(edge[1]).add(edge[0]);
    }
    for (int i = 0; i < n; ++i) {
        if (adj.get(i).size() == 1) leaves.add(i);
    }
    while (n > 2) {
        n -= leaves.size();
        List<Integer> newLeaves = new ArrayList<>();
        for (int i : leaves) {
            int t = adj.get(i).iterator().next();
            adj.get(t).remove(i);
            if (adj.get(t).size() == 1) newLeaves.add(t);
        }
        leaves = newLeaves;
    }
    return leaves;
}

Comments