Question Definition
Given a positive 32-bit integer n, you need to find the smallest 32-bit integer which has exactly the same digits existing in the integer n and is greater in value than n. If no such positive 32-bit integer exists, you need to return -1.
More …
Question Definition
Additive number is a string whose digits can form additive sequence.
A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two.
More …
Question Definition
Given a string containing only three types of characters: ‘(‘, ‘)’ and ‘*’, write a function to check whether this string is valid. We define the validity of a string by these rules:
- Any left parenthesis ‘(‘ must have a corresponding right parenthesis ‘)’.
- Any right parenthesis ‘)’ must have a corresponding left parenthesis ‘(‘.
- Left parenthesis ‘(‘ must go before the corresponding right parenthesis ‘)’.
- ‘*’ could be treated as a single right parenthesis ‘)’ or a single left parenthesis ‘(‘ or an empty string.
- An empty string is also valid.
Example 1:
Example 2:
Input: "(*)"
Output: True
Example 3:
Input: "(*))"
Output: True
Note:
- The string size will be in the range
[1, 100]
.
Java Solution
public boolean checkValidString(String s) {
Deque<Integer> left = new ArrayDeque<>();
Deque<Integer> star = new ArrayDeque<>();
for(int i = 0; i < s.length(); i++){
char c = s.charAt(i);
if(c == '*') star.push(i);
else if(c == '(') left.push(i);
else {
if(left.isEmpty() && star.isEmpty()) return false;
if(!left.isEmpty())
left.poll();
else
star.poll();
}
}
if(left.size() > star.size()) return false;
while(!left.isEmpty()){
if(left.poll() > star.poll()) return false;
}
return true;
}
Question Definition
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Note:
- The array is only modifiable by the update function.
- You may assume the number of calls to update and sumRange function is distributed evenly.
Java Solution
class NumArray {
private TreeNode root;
private int[] nums;
public NumArray(int[] nums) {
if(nums.length == 0) return;
root = new TreeNode(nums, 0, nums.length);
this.nums = nums;
}
public void update(int i, int val) {
int change = val - nums[i];
nums[i] = val;
TreeNode cur = root;
while(cur != null){
cur.sum += change;
if(cur.left != null && i >= cur.left.range[0] && i < cur.left.range[1]){
cur = cur.left;
} else if(cur.right != null && i >= cur.right.range[0] && i < cur.right.range[1]){
cur = cur.right;
} else
break;
}
}
public int sumRange(int i, int j) {
return sumRange(root, i, j + 1);
}
private int sumRange(TreeNode cur, int i, int j){
if(cur == null || i < cur.range[0] || j > cur.range[1])
return -1;
if(cur.range[0] == i && cur.range[1] == j)
return cur.sum;
int mid = (cur.range[0] + cur.range[1]) / 2;
if(j <= mid)
return sumRange(cur.left, i, j);
if(i >= mid)
return sumRange(cur.right, i, j);
return sumRange(cur.left, i, mid) + sumRange(cur.right, mid, j);
}
class TreeNode {
int[] range;
int sum;
TreeNode left;
TreeNode right;
TreeNode(int[] nums, int start, int end){
this.range = new int[]{start, end};
int mid = (start + end) / 2;
if(start < end - 1){
left = new TreeNode(nums, start, mid);
right = new TreeNode(nums, mid, end);
this.sum = left.sum + right.sum;
}else {
this.sum = nums[start];
}
}
}
}
Question Definition
A gene string can be represented by an 8-character long string, with choices from “A”, “C”, “G”, “T”.
Suppose we need to investigate about a mutation (mutation from “start” to “end”), where ONE mutation is defined as ONE single character changed in the gene string.
For example, “AACCGGTT” -> “AACCGGTA” is 1 mutation.
Also, there is a given gene “bank”, which records all the valid gene mutations. A gene must be in the bank to make it a valid gene string.
Now, given 3 things - start, end, bank, your task is to determine what is the minimum number of mutations needed to mutate from “start” to “end”. If there is no such a mutation, return -1.
More …